265 research outputs found

    Primordial non-Gaussianity and Bispectrum Measurements in the Cosmic Microwave Background and Large-Scale Structure

    Get PDF
    The most direct probe of non-Gaussian initial conditions has come from bispectrum measurements of temperature fluctuations in the Cosmic Microwave Background and of the matter and galaxy distribution at large scales. Such bispectrum estimators are expected to continue to provide the best constraints on the non-Gaussian parameters in future observations. We review and compare the theoretical and observational problems, current results and future prospects for the detection of a non-vanishing primordial component in the bispectrum of the Cosmic Microwave Background and large-scale structure, and the relation to specific predictions from different inflationary models.Comment: 82 pages, 23 figures; Invited Review for the special issue "Testing the Gaussianity and Statistical Isotropy of the Universe" for Advances in Astronom

    Rapid Separable Analysis of Higher Order Correlators in Large Scale Structure

    Full text link
    We present an efficient separable approach to the estimation and reconstruction of the bispectrum and the trispectrum from observational (or simulated) large scale structure data. This is developed from general CMB (poly-)spectra methods which exploit the fact that the bispectrum and trispectrum in the literature can be represented by a separable mode expansion which converges rapidly (with nmax=O(30)n_\textrm{max}={\cal{O}}(30) terms). With an effective grid resolution lmaxl_\textrm{max} (number of particles/grid points N=lmax3N=l_\textrm{max}^3), we present a bispectrum estimator which requires only O(nmax×lmax3){\cal O}(n_\textrm{max} \times l_\textrm{max}^3) operations, along with a corresponding method for direct bispectrum reconstruction. This method is extended to the trispectrum revealing an estimator which requires only O(nmax4/3×lmax3){\cal O}(n_\textrm{max}^{4/3} \times l_\textrm{max}^3) operations. The complexity in calculating the trispectrum in this method is now involved in the original decomposition and orthogonalisation process which need only be performed once for each model. However, for non-diagonal trispectra these processes present little extra difficulty and may be performed in O(lmax4){\cal O}(l_\textrm{max}^4) operations. A discussion of how the methodology may be applied to the quadspectrum is also given. An efficient algorithm for the generation of arbitrary nonGaussian initial conditions for use in N-body codes using this separable approach is described. This prescription allows for the production of nonGaussian initial conditions for arbitrary bispectra and trispectra. A brief outline of the key issues involved in parameter estimation, particularly in the non-linear regime, is also given

    Cosmology with phase statistics: parameter forecasts and detectability of BAO

    Get PDF
    We consider an alternative to conventional three-point statistics such as the bispectrum, which is purely based on the Fourier phases of the density field: the line correlation function. This statistic directly probes the non-linear clustering regime and contains information highly complementary to that contained in the power spectrum. In this work, we determine, for the first time, its potential to constrain cosmological parameters and detect baryon acoustic oscillations (hereafter BAOs). We show how to compute the line correlation function for a discrete sampled set of tracers that follow a local Lagrangian biasing scheme and demonstrate how it breaks the degeneracy between the amplitude of density fluctuations and the bias parameters of the model.We then derive analytic expressions for its covariance and show that it can be written as a sum of a Gaussian piece plus non-Gaussian corrections.We compare our predictions with a large ensemble of N-body simulations and confirm that BAOs do indeed modulate the signal of the line correlation function for scales 50–100 h−1Mpc and that the characteristic S-shape feature would be detectable in upcoming Stage IV surveys at the level of ∼4σ.We then focus on the cosmological information content and compute Fisher forecasts for an idealized Stage III galaxy redshift survey of volume V ∼ 10 h−3 Gpc3 and out to z = 1. We show that combining the line correlation function with the galaxy power spectrum and a Planck-like microwave background survey yields improvements up to a factor of 2 for parameters such as σ8, b1 and b2, compared with using only the two-point information alone

    The matter bispectrum in N-body simulations with non-Gaussian initial conditions

    Get PDF
    We present measurements of the dark matter bispectrum in N-body simulations with non-Gaussian initial conditions of the local kind for a large variety of triangular configurations and compare them with predictions from Eulerian perturbation theory up to one-loop corrections. We find that the effects of primordial non-Gaussianity at large scales, when compared to perturbation theory, are well described by the initial component of the matter bispectrum, linearly extrapolated at the redshift of interest. In addition, we find that for fNL= 100, the non-linear corrections due to non-Gaussian initial conditions are of the order of ∼3-4 per cent for generic triangles and up to ∼20 per cent for squeezed configurations, at any redshift. We show that the predictions of perturbation theory at the tree level fail to describe the simulation results at redshift z= 0 at scales corresponding to k∼ 0.02-0.08 h Mpc−1, depending on the triangle, while one-loop corrections can significantly extend their validity to smaller scales. At higher redshift, one-loop perturbation theory indeed provides quite accurate predictions, particularly with respect to the relative correction due to primordial non-Gaussianit

    The Matter Bispectrum in N-body Simulations with non-Gaussian Initial Conditions

    Get PDF
    We present measurements of the dark matter bispectrum in N-body simulations with non-Gaussian initial conditions of the local kind for a large variety of triangular configurations and compare them with predictions from Eulerian Perturbation Theory up to one-loop corrections. We find that the effects of primordial non-Gaussianity at large scales, when compared to Perturbation Theory, are well described by the initial component of the matter bispectrum, linearly extrapolated at the redshift of interest. In addition, we find that, for f_NL=100, the nonlinear corrections due to non-Gaussian initial conditions are of the order of ~3, 4% for generic triangles up to ~20% for squeezed configurations, at any redshift. We show that the predictions of Perturbation Theory at tree-level fail to describe the simulation results at redshift z=0 already at scales corresponding to k ~ 0.02 - 0.08 h/Mpc, depending on the triangle, while one-loop corrections can significantly extend their validity to smaller scales. At higher redshift, one-loop Perturbation Theory provides indeed quite accurate predictions, particularly with respect to the relative correction due to primordial non-Gaussianity.Comment: 17 pages, 7 figures. Revised to match journal version with updated references. Accepted for publication in MNRAS

    Galaxy-CMB and galaxy-galaxy lensing on large scales: sensitivity to primordial non-Gaussianity

    Get PDF
    A convincing detection of primordial non-Gaussianity in the local form of the bispectrum, whose amplitude is given by the fNL parameter, offers a powerful test of inflation. In this paper we calculate the modification of two-point cross-correlation statistics of weak lensing - galaxy-galaxy lensing and galaxy-Cosmic Microwave Background (CMB) cross-correlation - due to fNL. We derive and calculate the covariance matrix of galaxy-galaxy lensing including cosmic variance terms. We focus on large scales (l<100) for which the shape noise of the shear measurement becomes irrelevant and cosmic variance dominates the error budget. For a modest degree of non-Gaussianity, fNL=+/-50, modifications of the galaxy-galaxy lensing signal at the 10% level are seen on scales R~300 Mpc, and grow rapidly toward larger scales as \propto R^2. We also see a clear signature of the baryonic acoustic oscillation feature in the matter power spectrum at ~150 Mpc, which can be measured by next-generation lensing experiments. In addition we can probe the local-form primordial non-Gaussianity in the galaxy-CMB lensing signal by correlating the lensing potential reconstructed from CMB with high-z galaxies. For example, for fNL=+/-50, we find that the galaxy-CMB lensing cross power spectrum is modified by ~10% at l~40, and by a factor of two at l~10, for a population of galaxies at z=2 with a bias of 2. The effect is greater for more highly biased populations at larger z; thus, high-z galaxy surveys cross-correlated with CMB offer a yet another probe of primordial non-Gaussianity.Comment: 21 pages, 30 figure

    Cosmology and the Bispectrum

    Get PDF
    The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 Mpc/h spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work we present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. We address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies. We show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models we show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, we demonstrate that the expected statistical uncertainties in sigma8 of a few percent are robust to relaxing the dark energy beyond a cosmological constant

    The Halo Bispectrum in N-body Simulations with non-Gaussian Initial Conditions

    Full text link
    We present measurements of the bispectrum of dark matter halos in numerical simulations with non-Gaussian initial conditions of the local type. We show, in the first place, that the overall effect of primordial non-Gaussianity on the halo bispectrum is larger than on the halo power spectrum when all measurable configurations are taken into account. We then compare our measurements with a tree-level perturbative prediction finding good agreement at large scale when the constant Gaussian bias parameter, both linear and quadratic, and their constant non-Gaussian corrections are fitted for. The best-fit values of the Gaussian bias factors and their non-Gaussian, scale-independent corrections are in qualitative agreement with the peak-background split expectations. In particular, we show that the effect of non-Gaussian initial conditions on squeezed configurations is fairly large (up to 30% for f_NL=100 at redshift z=0.5) and results from contributions of similar amplitude induced by the initial matter bispectrum, scale-dependent bias corrections as well as from nonlinear matter bispectrum corrections. We show, in addition, that effects at second order in f_NL are irrelevant for the range of values allowed by CMB and galaxy power spectrum measurements, at least on the scales probed by our simulations. Finally, we present a Fisher matrix analysis to assess the possibility of constraining primordial non-Gaussianity with future measurements of the galaxy bispectrum. We find that a survey with a volume of about 10 cubic Gpc at mean redshift z ~ 1 could provide an error on f_NL of the order of a few. This shows the relevance of a joint analysis of galaxy power spectrum and bispectrum in future redshift surveys.Comment: 37 pages, 15 figure

    Effects and Detectability of Quasi-Single Field Inflation in the Large-Scale Structure and Cosmic Microwave Background

    Full text link
    Quasi-single field inflation predicts a peculiar momentum dependence in the squeezed limit of the primordial bispectrum which smoothly interpolates between the local and equilateral models. This dependence is directly related to the mass of the isocurvatons in the theory which is determined by the supersymmetry. Therefore, in the event of detection of a non-zero primordial bispectrum, additional constraints on the parameter controlling the momentum-dependence in the squeezed limit becomes an important question. We explore the effects of these non-Gaussian initial conditions on large-scale structure and the cosmic microwave background, with particular attention to the galaxy power spectrum at large scales and scale-dependence corrections to galaxy bias. We determine the simultaneous constraints on the two parameters describing the QSF bispectrum that we can expect from upcoming large-scale structure and cosmic microwave background observations. We find that for relatively large values of the non-Gaussian amplitude parameters, but still well within current uncertainties, galaxy power spectrum measurements will be able to distinguish the QSF scenario from the predictions of the local model. A CMB likelihood analysis, as well as Fisher matrix analysis, shows that there is also a range of parameter values for which Planck data may be able distinguish between QSF models and the related local and equilateral shapes. Given the different observational weightings of the CMB and LSS results, degeneracies can be significantly reduced in a joint analysis.Comment: 27 pages, 14 figure

    Galaxy Bias and Halo-Occupation Numbers from Large-Scale Clustering

    Full text link
    We show that current surveys have at least as much signal to noise in higher-order statistics as in the power spectrum at weakly nonlinear scales. We discuss how one can use this information to determine the mean of the galaxy halo occupation distribution (HOD) using only large-scale information, through galaxy bias parameters determined from the galaxy bispectrum and trispectrum. After introducing an averaged, reasonably fast to evaluate, trispectrum estimator, we show that the expected errors on linear and quadratic bias parameters can be reduced by at least 20-40%. Also, the inclusion of the trispectrum information, which is sensitive to "three-dimensionality" of structures, helps significantly in constraining the mass dependence of the HOD mean. Our approach depends only on adequate modeling of the abundance and large-scale clustering of halos and thus is independent of details of how galaxies are distributed within halos. This provides a consistency check on the traditional approach of using two-point statistics down to small scales, which necessarily makes more assumptions. We present a detailed forecast of how well our approach can be carried out in the case of the SDSS.Comment: 16 pages, 9 figure
    • …
    corecore